Calculations for Chapter 7 - Risk and Return

Expected Value: Mean = Sum of $(V \times P)$

The mathematical equation given in the text looks very complicated, but actually, you are just adding the products of the prices and the probabilities.

S	ales Value		Probability		Product	
	(V)		(P)		VxP	
	600	х	0.05	=	30	<< See formula. Insert it once, then drag it down
	800	x	0.10	=	80	
	1,000	x	0.70	=	700	
	1,200	x	0.10	=	120	
	1,400	х	0.05	=	70	
			1.00		1000	< <enter for="" formula="" sum<="" td=""></enter>

Standard Deviation: Square root of the Sum of P(V-expected value)2

		V- Expected Value calcu	lated above		
V	Р	V - 1000	squared	times P	
600	0.05	-400	160,000	8,000	< <see down<="" drag="" enter="" formulas,="" once,="" th=""></see>
800	0.10	-200	40,000	4,000	
1,000	0.70	0	- 0	- 0	
1,200	0.10	200	40,000	4,000	
1,400	0.05	400	160,000	8,000	_
				24,000	< <sum< td=""></sum<>
				155	< <square of="" root="" sum<="" td=""></square>

Coefficient of Variation = Standard Deviation / Mean

155 / 1000 = 0.155 or 15.5%

While the formulas look quite complicated, the actual calculations are not that bad at all. You should understand how this was done - you will not be required to do this on an exam.

Calculating the Standard Deviation of a Two-Asset Portfolio

A two-stock portfolio has 30% in Stock A, with an expected return of 21% and a standard deviation of 5% and the remainder in Stock B, with an 18% expected return and a standard deviation of 2%. The correlation coefficient is 0.6

Asset A Asset B

Amount
700,000
200,000

Weight
30.0%
70.0%

Expected
Return
21%
18%

Standard
Deviation
5%
2%

The standard deviation for this portfolio is:

 $\sigma p = \sqrt{(30\%)2 \times (5\%)2 + (70\%)2 \times (2\%)2 + (2\times30\% \times 70\% \times 0.6 \times 5\% \times 2\%)}$

 $\sigma p = \sqrt{0.000673}$

op = 0.0259

 $\sigma p = 2.59\%$

CONTINUE SETH WEIGHT! TEMA! BETH SO TIMES CONTINUED DESCRIPTION OF SOME STATES OF

Assume the risk-free rate is 5%, the expected rate of return on the market is 15%, and the beta of your firm is 1.2. Given these conditions, what is the required rate of return on your company's stock per the capital asset pricing model?

